Package: renyi (via r-universe)

November 21, 2024

Type Package

Title Renyi Outlier Test

Version 1.0.0

Author Ryan Christ < ryan.christ@yale.edu>

Maintainer Ryan Christ < ryan.christ@yale.edu>

Description renyi implements the Renyi Outlier Test

<arXiv:2411.13542>, an outlier test designed for modern large scale testing applications, especially where prior information available. The test combines a vector of independent uniform p-values into one p-value with power against alternatives where a small number of p-values are non-null. The test can leverage prior probabilities/weights specifying which variables are likely to be outliers and prior estimates of effect size. The procedure is fast even when the number of initial p-values is large (e.g. in the millions) and numerically stable even for very small p-values (e.g. 10^-300).

License Apache License (>= 2)

BugReports https://github.com/ryanchrist/renyi/issues

 $\boldsymbol{URL} \ \text{https://ryanchrist.r-universe.dev/renyi},$

https://github.com/ryanchrist/renyi

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

Imports stats, utils

Repository https://ryanchrist.r-universe.dev

RemoteUrl https://github.com/ryanchrist/renyi

RemoteRef HEAD

RemoteSha 2dc35e987f9660fe71b8ac4ef2fd6a759e5c0fdc

Contents

Index																					5
	renyi			•	•	•	•			 		•	•	•	•		•			 •	3
	generalized_renyi_transform					•				 				•			•	•	•		2

```
generalized_renyi_transform
```

Generalized Renyi Transform

Description

A Generalization of Aldous Renyi's representation of exponential order statistics

Usage

```
generalized_renyi_transform(x, a = NULL, b = NULL)
```

Arguments

X	a vector of independent exponential random variables of the form $X_j = a_j Y_j +$
	b_j where each Y_j is an independent exponential random variable with rate 1
а	vector of scale parameters implicit in the construction of x: a[j] = a_j
b	vector of shift parameters implicit in the construction of x: $b[j] = b_j$

Details

Maps a vector of shifted and scaled independent exponential random variables to a sequence of standard independent exponential random variables based on the gaps (jumps) between the initial random variables

Value

a list containing two elements

'exps' a vector of independent standard exponentials where exps[1] is the exponential jump corresponding to min(x) and tail(exps,1) is the exponential jump corresponding to max(x).

```
'order' order(x).
```

References

Christ, R., Hall, I. and Steinsaltz, D. (2024) "The Renyi Outlier Test", arXiv Available at: doi:.

renyi 3

Examples

```
# example code

a <- rchisq(10,1)
b <- rnorm(10)
xx <- a*rexp(10)+b
generalized_renyi_transform(xx, a, b)</pre>
```

renyi

Renyi Outlier Test

Description

A fast, numerically precise outlier test for a vector of exact p-values allowing for prior information

Usage

```
renyi(
    u,
    k = ceiling(0.01 * length(u)),
    pi = rep(1, length(u)),
    eta = rep(1, length(u))
)
```

Arguments

u	a vector of p-values
k	a rough upper bound on the number of outliers expected to be present in u
pi	optional vector such that $pi[j]$ is proportional to the probability that $u[j]$ is an outlier
eta	optional vector proportional to how far outlying we expect u[j] to be given u[j] is an outlier. More precisely, in the common context where each element of u can be thought of as a p-value for testing whether some coefficient β in a linear regression model is zero, we assume eta[j] is proportional to $\mathbb{E}\left[\beta_j^2 \middle \beta_j \neq 0\right]$.

Details

The about which p-values are outlying and "how much" of an outlier they are expected to be

Value

a list containing three elements

'p_value' the p-value returned by the Renyi Outlier Test;

'exit_status' a character string describing any problems that may have been encountered during evaluation, "default is no problems";

'u' the vector of p-values used by the outlier test after adjusting the u provided for pi and eta.

4 renyi

References

Christ, R., Hall, I. and Steinsaltz, D. (2024) "The Renyi Outlier Test", arXiv Available at: doi:.

Examples

```
# example code

p <- 1e4
u <- runif(p)
u[c(53,88,32)] <- 1e-6 # add a few outliers
renyi(u)$p_value # test for outliers without any prior knowledge
renyi(u,pi=c(rep(1,100),rep(10^-3,p-100)))$p_value # test for outliers with prior knowledge</pre>
```

Index

```
generalized_renyi_transform, 2
renyi, 3
```