Package: QForm (via r-universe)

November 23, 2024
Type Package

Title Fast, safe CDF/PDF estimation and bounding for generalized
chi-square random varaibles

Version 0.2.2
Maintainer Ryan R. Christ <rchrist@wustl.edu>

Description QForm provides estimates and upper/lower bounds on
p-values for test statistics of the form \deqn{\sum\limits_i
fleft(\eta_i \right) A_i + \sigma Z_0} {\sum\limits_i f
(\eta_i) A_i +\sigma Z_0} where each \eqn{A_i \sim
\chi*2_{a_i}\left(\delta2_i\right) } { A_i \sim
\chi”*2_{a_i}\left(\delta*2_i\right)} and \eqn{Z_0 \sim
N(0,1)}{Z_0\sim N(0,1)}, all terms mututally independent.

License GPL-3

Encoding UTF-8

LazyData true

Imports stats, RcppRoll

Suggests future, future.apply

RoxygenNote 7.3.2

Repository https://ryanchrist.r-universe.dev

RemoteUrl https://github.com/ryanchrist/QForm
RemoteRef HEAD

RemoteSha 4f878f579fb4ad98acela6a857a802ca27dfceb9

Contents

plot.QFGaussCDF e e e
QFGauss e e e e
QFGaussBounds
QForm e e e
TestQFGauss e e e
TestQFGaussBounds e

Index

QFGauss

plot.QFGaussCDF Plot method for a QF GaussCDF object

Description

Plots the CDF computed by QFGauss.

Usage
S3 method for class 'QFGaussCDF'
plot(x, ...)
Arguments
X a QFGaussCDF
additional parameters
Value

There is nothing returned.

QFGauss Fast CDF/PDF of a Quadratic Form in Gaussians

Description

Returns the CDF and PDF for the generalized chi-squared distribution. That is, random variables

T of the form
Ty = Zf(ni)Ai + 07

where each A; ~ x2 (6?) and Zy ~ N(0,1), all are mututally independent. By using the fast
Fourier transform and various adjustments for numerical precision, this function is faster and more
reliable than Davie’s method and related approaches, especially when the returned CDF or PDF is

to be evaluated at many points.

Usage

QFGauss(
f.eta,
delta2 = rep(0, length(f.eta)),
df = rep(1, length(f.eta)),
sigma = 0,
n =26 -1,
parallel.sapply = base::sapply

QFGauss 3

Arguments

f.eta vector; real-valued coefficients, f(7;), (may be positive or negative)

delta2 vector; non-negative real-valued non-centrality parameters for each term (de-
fault is Os). As is standard for chi-squared non-centrality parameters, these are
assumed to be already summed across terms when df > 1.

df vector; positive real-valued degrees of freedom for each term (represented in
equation above as a;, default is vector of 1s). If many “redundant” terms with
the same f(7;) and 52 can be collapsed into a single term by setting the corre-
sponding entries in df > 1, very significant speed increases can be achieved.

sigma numeric; standard deviation of optional Gaussian term Zj, default is 0 (no Gaus-
sian term added)

n integer; number of points at which to evaluate the characteristic function of T,

must be odd (see Details).
parallel.sapply
function; a user-provided version of sapply, see Details.

Details

The returned function has three optional, logical arguments. The first is a density, which when
TRUE, prompts the function to evaluate the PDF rather than the CDF. density defaults to FALSE.
lower.tail returns 1 minus the CDF when TRUE (not used if density==TRUE) and is highly
recommended for those interested in the upper tail of 7. log.p returns the desired probabilities in
log space.

parallel.sapply, by default, is set to base:sapply. However, it allows the user to supply a
parallelized version of sapply (eg: future_sapply from the future.apply package) to help speed
up the calculation of the CDF. This is helpful in cases where length(f.eta) is large.

n is the number of sub-intervals used in the left-sided Reimann integral approximation of the Fourier
transform carried out by stats::fft. The default 2216-1 should work for the vast majority of
cases, but n may need to be increased to achieve accurate CDF estimation when T’y has many terms
(when f.eta is long).

Since stats::fft can only evaluate the CDF up to double precision, we extrapolate the tails of
T't. QForm automatically detects the region where the estimated CDF begins to lose precision. A
log-linear function is used for tails that go out to infinity and a function of the form «|x|? is used for
tails truncated at O (when all of the f.eta have the same sign). These extrapolated tails, motivated
by the form of the characteristic function, provide accurate approximations in most cases when
compared against a quad-precision implementation (not yet included in QForm).

Our current tail extrapolation scheme can become unstable or fail in cases where the target distribu-
tion is extremely skewed. In these cases, one of the tails decays too rapidly to be estimated with the
given number of FFT grid points (set by QFGauss optional argument n). QFGaussBounds cannot
currently calculate bounds for a cdf returned by QFGauss that has a missing tail. While we plan
to address extremely skewed cases in future versions by deploying a second FFT when needed, for
now, we recommend that users who really care about estimation of the thin tail or obtaining bounds
with QFGaussBounds to try increasing the number of FFT grid points, n, passed to QFGauss.

A note on unbounded densities: The density of T is guaranteed to be bounded if length(f.eta) > 2
and there is no trouble in density estimation posed by asymptotes. In the length(f.eta)==2 case, if

4 QFGauss

the two components of f.eta are of opposite signs, then the density of T’y may have an asymptote at
some value ¢. While the density in the neighborhood around that ¢ should be accurately calculated,
due to the FFT and spline interpolation approach used, the density reported at ¢ may be reported
as some finite rather than as Inf. In the length(f.eta)==1 case, QFGauss resorts to dchisq and the
density at 0 is accurately reported as Inf.

Value

A function that evaluates the CDF or PDF of T’.

See Also

QFGaussBounds, TestQFGauss

Examples

f.eta <- c(-12, -7, 5, 7, -9, 10, 8)
delta2 <- c(2, 10, -4, 3, 8, -5, -12)"2
df <- ¢(1.1,5.2,0.4,10,1,2.5,1)

cdf <- QFGauss(f.eta, delta2, df)

Inspect computed CDF
plot(cdf)

Plot computed CDF at desired points

x <- seq(-1500, 2000, len = 1e3)

plot(x, cdf(x), type = "1", ylab = expression(CDF), xlab = expression(T[f]),
main = expression(CDF~of~T[f])) # CDF

plot(x, cdf(x,density = TRUE), type = "1", ylab = expression(PDF),
xlab = expression(T[f]), main = expression(PDF~of~T[f])) # PDF

Compare computed CDF to empirical CDF of target distribution based on 10,000 samples
TestQFGauss(cdf)

QFGauss can be accelerated by passing it a parallel version of sapply
Not run:

In this example we use only 2 parallel workers but more may be added
require(future.apply); plan(tweak(multiprocess,workers = 2))

f.eta <- 5 * rnorm(500)

system. time(cdf <- QFGauss(f.eta))

system.time(cdf <- QFGauss(f.eta, parallel.sapply = future_sapply))

End(Not run)

QFGaussBounds 5

QFGaussBounds Bounds on the CDF of a Quadratic Form in Gaussians

Description

Returns a function for calculating upper and lower bounds on the CDF for random variables Q) y =
Tt + Ry where only the CDF of T’ is known. These random variables have the form

Usage

QFGaussBounds (
cdf,
f = "identity",
max.abs.eta,
sum.eta,
sum.etasq,
sum.eta.deltasq = 0,
sum.etasq.deltasq = 0,

t =

include.saddlepoin FALSE
)
Arguments
cdf function; the cdf of T’ returned by QForm: :QForm
f character or QFormFunction object; the function f for the () of interest.
max.abs.eta vector; element-wise upper bound on the absolute value of the 7; in R; (see
Details)
sum.eta vector; element-wise sum of the 7; in R (see Details)
sum.etasq vector; element-wise sum of the 771-2 in Ry (see Details)

sum.eta.deltasq

vector; element-wise sum of the 771-51»2 in Ry (see Details)
sum.etasq.deltasq

vector; element-wise sum of the 1?62 in Ry (see Details)
include.saddlepoint

logical; if TRUE also return saddlepoint approximation based estimate of Q) ¢

alongside bounds. Currently only available when f = "identity." Default is
FALSE.

Details
Ty = Zf(m)Ai + 0%
€T

Rp=> f(n)A

i€ER

6 QFGaussBounds

, where each A; ~ x2 (67) and Zy ~ N(0, 1), all mututally independent, and a; = 1 forall i € R.
We aim to remove this final restriction in future work.

If max.abs.eta < .Machine$double.eps, then the contribution of Ry to Q) is ignored for nu-
merical stability and the function returned is simply wrapper for the provided CDF of T'. If this
is not desired, a user may want to consider rescaling @) to avoid this behavior. Currently only
f = identity” is supported, but future versions will allow one to select f from a list or specify
their own function with its corresponding bounds through a QFormFunction object.

The returned bounds function takes a vector of observed values q at which to calculate bounds as

it’s main argument. If g is not known exactly, but only a lower bound gl and an upper bound qu are

known, then those may provided instead of q and the returned bounds on the CDF will be valid for

aqgin [ql,qu]. If qis provided, gl and qu are ignored. The returned bounds function itself returns a

matrix with four columns: c("lower.bound”, "upper.bound”, ”one.minus.lower.bound”,"one.minus.upper.bound”)
The first and second columns are lower and upper bounds on the CDF at q respectively; the third

and fourth columns are equal to one minus the first two columns but calculated separately by the

function internally in order to maintain numerical precision in the upper tail. Thus, it is strongly

recommneded that users interested in upper tail p-values use the third and fourth columns rather

than the first and second.

The returned bounds function can also take a parallel version of sapply from a given R paral-
lelization package via the optional argument parallel.sapply. This can substantially speed up
computation for long gq. See Example below and QFGauss for more details.

QFGaussBounds cannot currently calculate bounds for a cdf returned by QFGauss that has a missing
tail. See QFGauss for more details.
Value

A vectorized function which evaluates upper and lower bounds on the CDF of Q) ¢.

See Also

QFGauss, TestQFGaussBounds

Examples

f.eta <- c(-12, -7, 5, 7, -9, 10, 8)
delta2 <- c(2, 10, -4, 3, 8, -5, -12)"2

cdf <- QFGauss(f.eta, delta2)

bounds <- QFGaussBounds(cdf = cdf, f = "identity",
max.abs.eta = 10, sum.eta = 5, sum.etasq = 200)

Not run:

Evaluate the bounds at a set of points
xx <- seq(-1e3, 1e3, len = 6)

This may take 5 - 10 secs.
system.time(y <- bounds(xx))

x <- seq(-1e3, 1e3, len = 1e3)
plot(x, cdf(x), type = "1", ylab = expression(CDF), xlab = expression(T[f]),

QForm 7

main = expression(Bounds~on~CDF~of~T[f])) # CDF
points(xx, y[,1], col = "blue")
points(xx, y[,2], col = "red")

Generate diagnostic plots for bounds (currently TestQFGaussBounds only
works for cases where the QFGauss produeced CDF has all df = 1.)
TestQFGaussBounds (QFGauss(c(1,5,-4,-3,10),c(2,-1,4,-5,5)"2),2)

The function returned by QFGaussBounds can be accelerated by passing it a
parallel version of sapply.

In this example we use only 2 parallel workers but more may be added
require(future.apply); plan(tweak(multiprocess,workers = 2))

system.time(y <- bounds(xx, parallel.sapply = future_sapply))

End(Not run)

QForm QForm: A package for fast, safe CDF/PDF estimation for generalized
chi-square random varaibles and screening with p-value bounds for
quadratic forms.

Description

QForm returns the CDF and PDF for the generalized chi-squared distribution with numerical accu-
racy deep into the tail (see QFGauss). It can also provide reliable upper and lower bounds on the
CDF when only some of the chi-square terms are known (see QFGaussBounds). By using the fast
Fourier transform in combination with novel concentration inequalities and various adjustments for
numerical precision, QForm function is faster and more reliable than Davie’s method and related
approaches, especially when the returned CDF or PDF is to be evaluated at many points.

Details

Initially motivated by genome-wide association studies (GWAS), QForm is aimed at obtaining
upper and lower bounds on p-values for test statistics with a limiting distribution of the form of
Q7 = Ty + Ry where only the CDF of T’ is known. These random variables have the form

€T
Rp=73 f(m)A
I€ER
, where each A; ~ XZ,- (63) and Zy ~ N(0, 1), all mututally independent, and a; = 1 foralli € R.
We aim to remove this final restriction in future work.
In the genomics literature, SKAT and related methods have limiting distributions of this form. In
the machine learning and kernel methods literature, other popular test statistics share this limiting

distribution, among them the Hilbert-Schimidt Information Criterion (HSIC). Approximate meth-
ods have emerged in the genomics (eg: FastSKAT) and kernel methods literature, have emerged

8 TestQFGauss

based on the idea of using a top-k SVD to obtain T’y and then attempt to approximate the contribu-
tion from R using a single random variable that matches some of the moments of 2. However,
we’ve found that in several applications, such approximations of Ry can lead to p-value estimates
that are off by orders of magnitude. We take a concentration-inequality based approach to bounding
the potential contribution of ¢ to the overall distribution of ()7, allowing us to obtain exact upper
and lower bounds on the p-value that can allow users to quickly discard observations (eg: genomic
loci) that could never be significant while concentrating further computational resources on more
precisely evaluating the p-value at loci that could still potentially be interesting/significant.

Our implementation features two main new functions. First, we do not rely on CompQuadForm,
which implements Davie’s method but as such has difficult-to-tune parameters and can often fail
for pvalues smaller than le-16. Davie’s method is based on a more general integral transform
that relates the CDF of a random variable to its characteristic function, but predates the fast fourier
transform. We make use of the same identity as Davies, but by combining it with the FFT, obtain the
CDF of random variables of the form of)y at many points in parallel (implemented in QFGauss).

Given the CDF produced by QFGauss, we apply a set of analytic and numerical intergration routines
to T’ to calculate our p-value bounds for @) ¢ (implemented in QFGaussBounds).

QForm functions

QFGauss TestQFGauss QFGaussBounds TestQFGaussBounds

TestQFGauss Test function for a QFGaussCDF object

Description

Compares the CDF inferred by QFGauss to an empirical CDF.

Usage

TestQFGauss(cdf, n.samps = 10000)

Arguments
cdf a QFGaussCDF
n.samps number of draws from the target distribution with which to construct the empir-
ical CDF
Details

Four plots are produced. The top-left plot overlays the CDF computed by QFGauss (in black)
and the empirical CDF (in red) based on 10,000 samples. The top-right plot shows the distance
between the empirical and QFGauss-computed CDF and the corresponding ks.test p-value (two-
sided alternative). The ks.test p-value will be NA if cdf is missing one of its tails (see QFGauss for
details). The two bottom plots allow comparison of the empirical CDF (in red) with the computed
CDF (in black) in each tail.

TestQFGaussBounds 9

Value

Nothing is returned.

See Also

QFGauss, TestQFGaussBounds

Examples

TestQFGauss(QFGauss(c(1,3,4,-3)))

TestQFGaussBounds Test function for a QF GaussBounds

Description

Compares the CDF bounds inferred by QFGaussBounds to a truncated approximation of the CDF
and a naive quadrature-based implementation of the bounds.

Usage

TestQFGaussBounds(
fullcdf,
k = min(20, floor(length(attr(fullcdf, "f.eta"))/2)),
n.bound.points = 16,
lower.tail.end = 20,
upper.tail.end = 20,
parallel.sapply = base::sapply

)
Arguments
fullcdf QFGaussCDF; the target CDF including all terms; currently TestQFGaussBounds
only works for cases where the QFGauss produeced CDF has all df = 1.
k numeric; the number of truncated terms provided to QFGaussBounds from which

to bound fullcdf
n.bound.points numeric; the number of points at which to evaluate the bounds for plotting

lower.tail.end numeric; the -log_10 lower tail probability at which to start each x-axis (default
=20)

upper.tail.end numeric; the -log_10 upper tail probability at which to end each x-axis (default
=20)

parallel.sapply
function; a user-provided version of sapply, see Details.

10 TestQFGaussBounds

Details

Here, fullcdf is taken to be the CDF of the target random variable () (see documentation of
QFGauss for definitions). Four plots are produced. The top-left plot overlays the target CDF of @,
fullcdf, computed by QFGauss (in black) and a truncated approximation to that CDF (in orange)
based on simply adding the expectation of the remainder term R to the top-k truncated version of
fullcdf, Ty. By "top-k" here we mean taking the terms of)y with the largest magnitude coeffi-
cients, f.eta, and using that to define 7'y, which is what is done in TestQFGaussBounds internally.
The green line is a similar approximation but where Iy is approximated with a moment-matching
gaussian. The upper and lower bounds on fullcdf computed by QFGaussBounds are plotted as
red and blue circles respectively. The upper and lower bounds on fullcdf computed by a naive
quadrature-based implementation of the bounds are plotted as red and blue Xs respectively. The
top-right plot shows the difference between the truncated approximation of the CDF and fullcdf
in log space. It may be interpreted as follows. The x-axis plots the -log_10 p-value one would have
reported based on the truncated approximation alone. The y-axis is the difference between the true
-log_10 p-value and the approximate -log_10 p-value. The difference in p-values in the upper tail
is plotted with a solid line. The difference in p-values in the lower tail is plotted with a dashed line.
This plot effectively shows how far one might be misled by the truncated approximation shifted by
the expectation of the remainder terms. The two bottom plots allow comparison of the empirical
CDF (in red) with the computed CDF (in black) in each tail.

Value

There is nothing returned.

See Also

QFGaussBounds, TestQFGauss

Examples

TestQFGaussBounds (QFGauss(c(1,5,-4,-3),c(2,-1,4,-5)*2),2)

Index

plot.QFGaussCDF, 2

QFGauss, 2, 6-10
QFGaussBounds, 4, 5, 7, 8, 10
QForm, 7

QForm-package (QForm), 7

TestQFGauss, 4, 8, 8, 10
TestQFGaussBounds, 6, 8, 9, 9

11

	plot.QFGaussCDF
	QFGauss
	QFGaussBounds
	QForm
	TestQFGauss
	TestQFGaussBounds
	Index

